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Abstract 

The entire process of a coal power plant from coal delivery to electricity generation can be 

modeled using machine learning methods that generate a single set of equations to govern the 

entire plant. The basis for the model is a database of historical data from the data historian. 

No engineering or human input is required at all. This model is then used to compute the 

optimal operational point at any moment in time. The criterion for optimality is the overall 

equipment efficiency over the entire plant. It is found that this optimization can achieve more 

than 1% absolute improvement over current operations in a real coal power plant over the 

long term. This method requires no changes to be made to the plant and requires nominal 

human effort to implement. The achievements are based on operating changes that are now 

computed and not arrived at using human experience. Having a uniform operational strategy 

24 hours a day combined with the fact that this model can incorporate the full complexity of 

the plant is the original element that lies at the basis of the 1% improvement. 

 

1. Statement of the Problem 

A coal power plant essentially works by creating steam from water by heating it via a coal 

furnace. This steam is passed through a turbine, which turns a generator that makes the 

electricity. See figure 1 for a diagram. 
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The plant has an efficiency that is approximately 40% depending on the design. However, the 

efficiency is not a constant but changes over time depending on how the plant is operated. 

While many smaller processes are automated using various technologies, the large scale 

processes are often controlled by human operators. Depending on the knowledge, experience 

and level of difficulty of any particular plant state, the decisions of the operators get the plant 

closer to the maximum possible efficiency. 

 

With operators working in shifts, no one operator controls the plant over the long-term but 

usually in eight hour shifts. It can be observed that the efficiency oscillates in a rough eight 

hour pattern showing that human decision making has a significant influence on the 

efficiency. Not only are some operators better than others, it is not practical to extract and 

structure the experience and knowledge contained in the human brain of the best operator in 

such a fashion as to teach it to the others. 

 

Furthermore, the plant outputs several thousand measurements at high cadence. An operator 

cannot possibly keep track of even the most important of these at all times. The degree of 

complexity is too great for the human mind to handle and the consequence is that suboptimal 

decisions are taken. 

 

In this paper, a novel method is suggested to achieve the best possible, i.e. optimal, efficiency 

at any moment in time. This has achieved an efficiency increase of 1.1% absolute in a real 

coal power plant. Moreover, this efficiency increase is available uniformly over time 

effectively increasing the base output capability of the plant. 

 



 

Fig. 1: The main constituents of a coal power plant.

 

2. Methodology 

Sensor equipment is installed in all important parts of the plant and thus alerting the operator 

via the control system about the current state of the plant.
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tools for creating a set of equations that govern the behavior of the black box. The resulting 

set of equations is called a mathematical model. 

 

Note that the model does not allow us to ‘understand’ the process inside the black box. But it 

does allow us to compute the output of the black box given a sample input. Using the results 

of optimization theory, we can reverse this process and compute the input needed to achieve a 

given desired output. 

 

Control theory is meant to be applied manually. For a process as complex as that of a power 

plant, this is impractical due to the amount of work that would be required. It is suggested to 

use machine learning [1] to develop the set of equations automatically. There are various 

techniques available to achieve this such as neural networks [2]. We opt for the technique of 

recurrent neural networks [3]. Here we must differentiate classificatory neural networks [2] 

from recurrent neural networks [3]. The first can tell the difference between a finite number of 

types of objects while the second can represent the evolution over time. 

 

The advantages of using machine learning are that the model is produced within a very short 

time (usually days), that it is adaptive (i.e. it learns continuously as it experiences more data), 

that it can change to match new situations (the new data is learnt) and that the entire problem 

can be modeled (and not a simplified version as in the manual approach). Thus, this method is 

economical. 

 

In the state vector that describes the plant, there are elements of three different types. First, 

there are measurements that can be directly controlled by the operator. An example is the 

amount of coal per hour being put into a particular mill. We call these controllable, xc
(t)

. 

Second, there are measurements that cannot be controlled at all by the operators and thus 

represent a state of the world. An example is the outside air temperature. We call these 

uncontrollable, xu
(t)

. Third, there are measurements that are indirectly controlled via the 

controllable measurements. An example is a vibration in the turbine. We call these semi-

controllable, xs
(t)

. 

 

Uncontrollable measurements provide boundary conditions for the problem and so we really 

have a set of models depending on the boundary conditions. This poses no problem for 

machine learning and is simply included in the model of the black box that is the plant. The 
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only requirement is that it must be clearly defined which measurements belong into which of 

the three possible groups. Once this is known, the learning may begin. 

 

What we obtain is a function f( xc
(t)

 ; xu
(t)

 ) = xs
(t)

. In words, this means that we have a function 

with the controllable measurements as variables, the uncontrollable measurements as given 

parameters and the semi-controllable measurements are functional outputs. The plant 

efficiency is, of course, among the semi-controllable outputs of the function f(…). 

 

With this model and given a particular boundary condition xu
(t)

, we may compute the reaction 

of the plant xs
(t)

 to any particular operator decision xc
(t)

. This is effectively a plant simulation. 

Such a system may be used for training and practice of the operators. 

 

More interestingly, we ask whether the function may be inverted, i.e. whether the function 

f
-1

( xs
(t)

 ; xu
(t)

 ) = xc
(t)

 can be obtained. Generally, it is not possible to invert functions directly. 

However, we do not require a closed form solution of this problem but only a numerical 

solution. This may be achieved using the theory of numerical methods [4]. 

 

In particular, we are not necessarily interested in general inversion but rather in a very special 

form of inversion, namely optimization. Given particular boundary conditions, we would wish 

to know what input variables lead to the optimal state of the plant. The optimum state is 

defined by some merit function g( xs
(t)

 ; xu
(t)

 ). The simplest such merit function is the plant 

efficiency but we may also take into account market prices and other business features to 

define what we believe to be the optimum. 

 

Thus we ask, what is xc
(t)

 such that g( xs
(t)

 ; xu
(t)

 ) achieves a global maximum where the 

relationship between the variable vector and the merit function is contained in the inverted 

model f
-1

( xs
(t)

 ; xu
(t)

 ) = xc
(t)

. This is a classic optimization problem. As the functions are only 

known numerically and they are highly non-linear and time-dependent, this is a complicated 

optimization problem requiring state-of-the-art treatment but such problems can be solved. 

 

3. Theoretical limitations 

Of course, whatever methods we choose, they cannot have arbitrary accuracy or stability. 

Thus, every x
(t)

 has an inherent measurement induced uncertainty ∆x
(t)

 attached to it. This 

means that the true value of the state vector is somewhere in the range [x
(t)

 - ∆x
(t)

, x
(t)

 + ∆x
(t)

]. 
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Please note that no measurements made in the real world are ever completely precise. There 

are random and structured errors associated with the measurement process, also physical 

sensors drift with age and environmental effects. All of these must be taken into account to 

determine a reasonable measurement uncertainty ∆x
(t)

. 

 

A further limitation is the length of the history. The history must contain a record of the 

variations that are to be expected in the future so that these variations, correlations and other 

structures may be included in the model. It is thus desirable that the history be as large as 

possible and also the time unit (governing the frequency of measurements) be as small as 

possible. Together these two define a history that contains the maximum available knowledge 

about the system. 

 

Our efforts are thus limited by three fundamental factors: (1) The number and identity of the 

measurements made, (2) the length, frequency and variability of recorded history and (3) the 

inherent accuracy of a measurement itself. Together these three factors will determine 

whether a reliable and stable model can be found. 

 

4. Application 

Initially, the machine learning algorithm was provided with no data. Then the points 

measured were presented to the algorithm one by one, starting with the first measured point 

x
(-h)

. Slowly, the model learned more and more about the system and the quality of its 

representation improved. Once even the last measured point x
(0)

 was presented to the 

algorithm, it was found that the model correctly represents the system. 

 

In a particular power plant, the history covered nine months of data extracted once per minute 

for nearly 2000 measurements. After modeling, the accuracy of the function deviated from the 

real measured output by less than 0.1%. This indicates that the machine learning method is 

actually capable of finding a good model and also that the recurrent neural network is a good 

way of representing the model. 

 

Controllable variables include settings on the furnace such as the coal loading into the furnace 

and the provision of air for the furnace. Also some operational settings (set-points) of the 

turbine and the generator were available. Boundary conditions were provided by coal quality, 
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the power output of the plant and various weather effects such as the air temperature and 

humidity and also the cooling water temperature. 

 

The model was then inverted for optimization of plant efficiency. The computation was done 

for the entire history available and it was found that the optimal point deviated from the 

actually achieved points by 1.1% efficiency in absolute terms. Moving from, say 40%, to 

41.1% efficiency is a significant gain for any power plant. 

 

In the analysis nearly 1000 different operational conditions (in the nine month history) were 

identified that the operators would have to react to. This is not practical. The model is now 

capable of determining the current state of the plant, computing the optimal reaction to these 

conditions and communicating this optimal reaction to the operators. The operators then 

implement this suggestion and the plant efficiency is monitored. It is found that 1.1% 

efficiency increase can be achieved uniformly over the long term. 

 

The model can provide this help continuously. As the plant changes, these changes are 

reflected in the data and the model learns this information continuously. Thus, the model is 

always current and can always deliver the optimal state. 

 

In daily operations, this means that the operators are given advice whenever the model 

computes that the optimal point is different from the current point. The operators then have 

the responsibility to implement the decision or to veto it. 

 

For those parts of the power plant that are already automated, the model is valuable also. 

Automation generally functions by humans programming a certain response curve into the 

controller. This curve is obtained by experience and is generally not optimal. The model can 

provide an optimal response curve. Based on this, the programming of the automation can be 

changed and the efficiency increases. The model is thus advantageous for both manual and 

automated parts of the power plant. 

 

Effectively the model represents a virtual power plant that acts identically to the real one. The 

virtual one can thus act as a proxy on that we can dry run all sorts of strategies and then port 

these to the real power plant only if they are good. That is the basic principle of the approach. 

The novelty here is that we have demonstrated on a real power plant, that it is possible to 
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generate a representative and correct model based on machine learning of historical process 

data. This model is more accurate, all encompassing, more detailed, more robust and more 

applicable to the real power plant than any human engineered model possibly could be. 
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