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Raid Braid: Fast Conjugacy Disassembly
in Braid and Other Groups

Patrick D. Bangert

ABSTRACT. The conjugacy problem in finitely presented groups is an impor-
tant old problem that has gained prominence recently via group theoretical
encryption methods. The theory of rewriting systems is extended to allow
conjugacy problems in certain groups to be solved using rewriting methods.
We construct explicit rewrite systems to solve the word and conjugacy prob-
lems in the braid groups. We show that the complexity of both algorithms
is polynomial-time. This resolves an old problem in low-dimensional topology
and shows that the braid group is not a suitable platform group for cryptog-
raphy, against expectations in the literature.

1. Introduction

The braid group can be defined by its Artin presentation,
(1) Bn = <{0’l} 1005 R 00, 0i0i410; X 0i41040;+1, i,j <n, |Z —j| > 1>

There is a popular geometric interpretation of the generators o; of this group in
which there are n strings all of which are extended vertically upwards with the
exception of the i*" and i + 1°¢ string that exchange places such that the i** string
is closer to the observer; the order of these strings reverses in the inverse of the
generator o, ! In what follows we shall use the symbol &~ to mean that two words
in the above generators are equivalent in the sense that one may be transformed
into the other by the relations in B,, and we use the = sign to mean letter by letter
equality. Furthermore, we denote the length of the braid word a by L(a) and the
number of strings (the braid group it belongs to) by n(a).

We may ask the word, conjugacy and Markov problems as follows: Given two
braids a,b € B,,, the word problem asks whether a ~ b and the conjugacy problem
asks whether there exists a word ¢ € B,, such that a ~ cbc™! (we denote conjugacy
by ~.). For two braids a € B,, and b € B,,,, the Markov problem asks whether it is
possible to get from a to b using a finite number of conjugations and stabilizations
(a stabilization is the move a — ao;*! or its inverse). It is clear that the word
problem is a special case of the conjugacy problem which is a special case of the
Markov problem.
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There is much cause to study these problems for many reasons. Alexander
proved that any knot can be represented as a braid provided that the braid is closed
(its endpoints at both the top and bottom are pairwise identified) [1]. Subsequently,
Markov claimed and Birman proved that any two closed braids (i.e. knots) are
ambient isotopic if and only if they are Markov equivalent [7]. Thus, the clearly
important problem of knot classification becomes a problem in combinatorial group
theory.

Thus far, no solution to the Markov problem is known. As the word and
conjugacy problems are sub-problems of it, they can be attacked first and have
both been solved many times. The word problem was first solved by Artin in
the same paper that first introduced braids in 1925 [3, 4] whereas the conjugacy
problem was first solved by Garside in 1969 [14]. The best solutions known to date
are presented in [8, 18].

The paper is organized as follows. We review the major current application of
our result in the theory of cryptography. A word problem solution using rewrite
systems is constructed next. We then extend the theory of rewrite systems (mainly
Newman’s Lemma and the Critical Pair Lemma) and Knuth-Bendix completion
to the case of circular words. This extension is used to extend the word problem
solution to a conjugacy problem solution. Finally the correctness and complexity
of the solution is analyzed. We assume throughout that the reader is familiar with
the concepts of term rewriting systems; a suitable introduction may be found in
[5].

2. Group-theoretic Cryptography

There are many practical applications of algorithms that solve either one of
these problems. A recently prominent application is in group theoretical cryptog-
raphy in which the encryption keys are group elements [2]. This public-key system
takes a platform group in which the two corresponding partners have to solve word
problems in order to decrypt their messages. The intruder, who lacks the private
keys, needs to solve a conjugacy problem to break the cypher. Thus we are looking
for a group in which we have a fast solution for the word problem and a very difficult
conjugacy problem. It has been proposed that the braid groups are suitable because
the most efficient word problem algorithm runs in O(L(a)?n(a)) time [8] whereas
all known conjugacy algorithms run in exponential time in both L(a) and n(a). All
attempts at proving the conjugacy problem to be difficult (such as NP-complete
for instance) have not met with success. This paper constructs a polynomial-time
algorithm for the conjugacy problem and thus shows that a different group must be
sought. It also raises afresh the question of an algorithmic solution to the Markov
problem (i.e. combinatorial knot classification) that has virtually been abandoned
due to the supposed difficulty of the conjugacy problem.

There have been many attempts to break the group-theoretic cypher with the
braid groups as platform, as proposed by Anshel et. al. [2]. It is plain that a high
worst-case complexity for the conjugacy problem does not yet save the platform
group as the average-case complexity could be exponentially lower. This is the
basis for probability attacks in which the algorithm is polynomial-time but not
guaranteed to succeed [15, 21]. An algorithm for the conjugacy problem in the
braid groups has been devised that is linear in the size of the super-summit set [12]
of a braid; while no concrete size estimates are available, it seems clear that the
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size is exponentially growing with length and group index [13, 16]. One may try
to solve the conjugacy problem in other presentations but this does not appear to
reduce the complexity [20]. A (strictly) sub-problem of the conjugacy problem has
been solved in polynomial-time [9]: The Diffie-Hellman conjugacy problem that
asks to find baua~'b~! for given u, aua™', bub~! for a and b in two commuting
subgroups of B,,.

3. The Word Problem in B,

To solve the word problem, we begin with the braid group and form an as-
sociated monoid by adding the relation defining the inverse generators and the
definition of the generator of the center of the braid groups, A2 = (o100, _1)"
[10].

M ( ) <{a_:|:1 :EI’“_ or! DAiQ} AiQUZ—JzAfQ;
@ AfL?A,TQ:JiilU;FI = e
2
+1/¥1 +1/F1 L
,ilj /¥ 4/¥0'?:1f01"|l—]|>1;

+1_+1 _+1 +1 41 _+1
O; 0i410; =0;110; Oq)

This choice will allow a complete rewriting system to be deduced. It should be clear

that if we are successful in solving the word and conjugacy problems in M ™ (B,,),

the problems in B,, are solved. For convenience, we define

(3) amv :0i0i+1"'0j
(4) dijj = 0i0i-1--0;
We now define a total order <; on the letters of our alphabet

2 -2 —1 -1 —1
(5) A <p AL <p01<p02<p-<pOpn_1<p0] <p0y <p--<p0

n—1

Having formulated the problem thus, we use Knuth-Bendix completion to obtain
our rewrite rules. In practice, this process is laborious and would occupy prodigious
space if described in detail. For this reason, we will simply state the result and prove
it to be correct.

For what follows, we shall represent a braid of the form A2 P as the pair (k, P).
The reason for this is to effectively remove any sub-braid which lies in the center
of the braid group B,, from the braid in question. The reason for this will become
apparent when we extend our solution to the conjugacy problem. Removing any
A2k from any part of a braid, while remembering how many have been so removed,
can be done without loss of information because A2 is the generator of the center
of B,, and thus its position is irrelevant. We obtain the following rewriting system.

Wo={()o;"

7

[d]71a17 1,101 ,5—1 H djia1,] & k—k—1;
Jj=i+1

||:]|

(2) 0,05 — 0j0; for j <i—1,
(6) (3) 0y0i—1Po; — 0,_10;0,_1P;
(4) 0;0:-1Q0i_1Rd; ; — 0i_10;0,_1Qd;_1 jo; RT for j < i;

n—1 n—1
) Hdi,1a1,i5¢—> HSi & k—k+1}

i=1 i=1
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The variables P, @, R and S; are (possibly empty) words in the generators oy, (and
not their inverses O'];l) subject to the restriction that the highest generator index
kisi—2,i—2,7—1 and ¢ respectively and the lowest generator index in R is 7,
where ¢ and j refer to the values of the generator indices of the respective rules.
The word R* is obtained from R by increasing all generator indices in R by one.
Note that rules 1 and 5 require two replacements to be made simultaneously. Rules
1 and 5 are simple to understand; the other rules are illustrated in figure 1.

9*
> ﬂ

Rule 3:

Rule 4:

FI1GURE 1. Rules 2, 3 and 4 of TRS W, illustrated.

THEOREM 3.1. W, is complete and thus solves the word problem for B,,.

Proof. (termination) Every application of W, simplifies any word with respect to
<p. As <y is well-founded, W,, terminates.

(local confluence) There are 20 overlaps between the rules in W,, and none give
rise to a critical pair. For reasons of space, we do not provide all the reduction
steps for each overlap but list all overlaps, the rules from which they arise and the
common reduct of all reduction paths of the overlap in table 1. The restrictions
on the indices and the variables are obvious from the context and the definition of
W,,. The dedicated reader may easily but laboriously verify that the list is both
complete and correct. There are an additional 16 (four variables and four positive
redexes) variable overlaps, i.e. overlaps in which a variable completely contains a
redex, but these resolve trivially and so are not listed in the table. By the Critical
Pair Lemma, we thus conclude that the system is locally confluent.

(confluence) As the system terminates and is locally confluent, Newman’s
Lemma allows us to conclude that the system is confluent and thus complete.

(equivalence) We now need to demonstrate that when the arrows are replaced
by equal signs, we retrieve the monoid’s relations exactly. Rules 2 and 3 imply both
braid group relations. Rule 5 represents the definition of A2 in terms of the o;. The
second parts of rules 1 and 5 imply that A2 and A, 2 are inverses. Rule 1, after
use of the braid group relations, the definition of A2 and A2 indicates that o;
and o; ! are inverses. All (and only) the relations in the monoid M*(B,,) are thus
contained in W,,. Birkhoff’s theorem thus tells us that this system is equivalent to
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the monoid M ™ (B,,). As it is complete as well, it thus solves the word problem by

reducing each word to its normal form.

TABLE 1. Overlaps between rules in W,,. (The ellipses, - -

O

-, indi-

cate line breaks and not pattern continuation signs.)

!

Overlap

Final Form

w W W [\ [\.’J“l\Jl\Jl\')N)[\Dl\J
= W Ot = R W W W N

s W W W W w
R O s e e

0,040k
O’Z‘O'jO'j_1PO'j
Jiai_lajpm
0'7;02',1P0'7;0j
O'Z'Uij,lQO'jflej’k
0;0i—10x,Qoi—1 Rd; ;
oi0i-1Q0;_1Rd; joy,
n—1

[[ dira1:Si;S; = onS

i=1

oioi—1Pojoi_1P'o;
O'iaiflPUiUileUiflei,j
0;0i-10;—2Po; _1R---

T O'i,QR/UiflR//di)j
0i0;—10;—2Po;_1Ro;_1R'd; ;
0i0;—10;—2Po;_1Ro;_oR'd;
0;0i_10;_2Po;_1Rd; ;

Uiai—lpo'i—lei,jR/Jk
n—1
. — /
‘H1 dij1a1,i5:;S; = 0j-1P0;5;
i
! /
0i0i—1Qoi—1Rd; jQ op_1R'dm
!
0i0i-10i—2Q0i_oRd;_1 ;Q'd; 1,
0i0;-1Q0;—1Rd;
n—1
IT dia1,:S;
i=1

S; = O’j_lQJj_lej,kS;-

O0k0;0;

aj_lajoj_lPai
O'j(fi_ldi(ﬂ_lp
Ui710i0i71PUj
O’jflo'jO'jledj,LkUjR—"_O'i
04k0i-100i-1Qd;—1 0, R
0i-10i0i—1Qokd;—1 0, R
n—1

1-1;11 Si;Sj = O'J‘S;-
0i—10;0,—1Po;_1P'o;
O'iflo'iaif1P0i71QUi71Rdi,j
0;-20;_104_20;0; 10; 2P -

s Rdi,Q’jUi,1R/+0‘iR//+
0i—20;-10i—20i0;-10;—2PRd;_5 jo; R'*
0i_20i_10i_20:i0;10;_9PRd;_5 jo; 1 R'™"
0i—20;_10;_2040;_10; 2P Rd;_3 ;
Ui—lgiai—1Pdi—1,j0iR+R/0k
n—1
1_‘[1 SZ‘;S]‘ = aj_lPajS;-
=
Uiflgio'ifleifl,jJiRJrQ,kalRldk,m
Oi—20;_10;_20;0;_10;_2Q - -~

cdiopdioy o RTTQT
0i-10;0;-1Qd; jo;RT
n—1
I1 Si
i=1
Sj = ij_lQO'j_lechS;

The rules of a rewrite system are to be applied in a non-deterministic way and
a complete rewrite system always reaches the unique normal form no matter what
strategy of rule application is chosen [5]. Algorithm 3.2 presents one such strategy
the complexity of which in proven in theorem 3.3.

ALGORITHM 3.2. Input: A word w € B,,. Output: A word w' € B,, which is
the unique representative of the equivalence class of w.

(1) Apply rule 1 of W,, as many times as possible.
(2) Apply rules 2, 3, 4 and 5 of W,, as many times as possible in order pro-

ceeding to the next rule only if the current can no longer be applied.

w’ has been found.

(3) Loop step 2 until no rule may be applied to the word at all. In this case
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THEOREM 3.3. W, solves the word problem for any word w € B, with com-
plezity O (L(w)*n(w)*).

Proof. Suppose that w contains exactly m inverse generators. Rule 1 may be
applied exactly m times; note that m goes as O(L(w)). We must search the word
for the redexes of rule 1 and then replace them. Searching is an O(L(w)) operation
but the reducts increase in length as O(n(w)?) and thus the application of rule 1
takes time O(L(w)n(w)?). It is clear that rule 1 may never be applied again and the
word length of w is now Ly(w) = L(w) + mn(w)(n(w) — 1) —m = O (L(w)n(w)?).
Rule 2 may be applied a number of times bounded by La(w)? as it is a pairwise
comparison between all generators in the word at worst. An application of rules 3
and 4 may give rise to a further application of itself or the other rule but strictly
later in the word and thus the number of times they may be applied is bounded by
Lo(w). While rules 2, 3 and 4 keep the word length constant, rule 5 reduces it by
n(w)(n(w) + 1) and thus rule 5 may be applied a maximum of
2

m  Hwdme) 1) om OEWRWY) g 1)

n(w)(n(w) + 1) O (n(w)?)
times. Thus the total worst-case complexity of the algorithm is O(Lo(w)?) =
O(L(w)*n(w)*). The application of rule 2 is responsible for the quadratic behavior
in the length; it is the bottleneck of the calculation. O

We have already noted that the most efficient algorithm known has complexity
O(L(w)*n(w)) and so our algorithm is slower by a factor of n(w)? [8]. The purpose
of presenting it here is (1) that this algorithm is very easy to understand and apply
as it is just a set of five rewrite rules (past algorithms were much more involved)
and (2) that this algorithm generalizes to the conjugacy case.

4. Rewriting Systems for Conjugacy Problems

We wish to extend the rewriting system above to the case of conjugacy and,
as some labor will show, this is not possible using existing methods. Thus, the
theory of rewriting systems must be slightly extended to deal with this case and
this is what we shall do in this section. It will be apparent that these methods are
applicable to a wide range of groups and is certainly not restricted to the braid
groups.

We first describe the idea and then give the details of the method. We find
that the notion of completeness generalizes to the new setting and then proceed
to prove that the conditions for completeness also generalize. This leaves us with
the construction of two methods; namely the checking for termination and critical
pairs. For the new setting such methods are given and proved correct. All we now
have to do in a particular setting is check these two conditions; if they hold we
have a valid conjugacy problem solution. At the end of the paper we actually check
them for the braid group and find them to hold.

4.1. The Idea for Free Groups. First, we shall illustrate the idea behind
the extension and then work out the details. Suppose that G = F,, the free group of
rank n. This group is generated by n elements {f;} for 1 <7 < n and no relations
[19]. A general word w € F,, takes the form

(8) w = fPLfrz... fPm, 1<sp<n
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Since there are no relations in F,,, the word w is unique over its equivalence class
if and only if s; # s;41 for all 4. This condition is trivially obtained from any word
w € F, by applying the (obviously) complete rewriting system

Thus R, (Fy,) solves the word problem in any free group F,,. Moreover, it does so
in a time proportional to L(w).

Consider now the conjugacy problem in F,,. We define the it" cyclic permuta-
tion C*(w) of a word w in the general form of equation (8) by

(10) Cl(w) = fol - fom=t fom fP1fP2 . £
such that

m
(11) pit+ Y pe=i

k=j+1

Intuitively, the i*" cyclic permutation is obtained by taking the last i generators in
the word w and moving them to the front of the word one by one.

DEFINITION 4.1. Two words w and w' are cyclicly permutable (denoted ~.p)
if and only if there exists a finite sequence of moves from w to w' where each move
is a cyclic permutation or a word equivalence move in the group.

REMARK 4.2. Let us consider an alphabet of three letters a, b and ¢ with the
equation ab = bc. Then abc ~., bca as the right-hand side is the second cyclic
permutation of the left-hand side. We also have that abc =, bce by not permuting
at all but applying a word equivalence. Finally, it is obvious that cyclic permutability
forms an equivalence relation for any group G. We give this example to make the
definition clear lest it cause confusion in connection with the statement that the
equivalence relation of cyclic permutability is the same as that of conjugacy (see the
proposition below). Conjugating the word w with the word q is nothing more than
appending qq~* to the end of w and then moving the last L(q) letters to the front
of the word. Thus this proposition should be clear now.

PROPOSITION 4.3. For any group G and any two words w,w’ € G, we have
W Rep w'if and only if w R, w'.

Proof. Any group G has a presentation which may be obtained from some free
group F,, of rank n by adding relations [11]. Moreover, if the conjugacy problem
is solvable in one representation, it is solvable in all [22]. Suppose w ~, w’, then
there exists an ¢ for which

(12) w' a2 CH(w) = fa - fm=) fom fo1fr2 . f
where
m
(13) P+ Z pr =1
k=j+1

Let

p/./
(14) V=SETG T
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Then

(15) w o~ o oy

(16) ~ flvfs_f R Fu ]

(17) ~ oy lwy

Thus we have w ~, w’. Now suppose w =, w’, then there exists a v such that
(18) w' Ay wy

If the word length of 7 is L(7y), then we have

(19) CrM (') v w r w

Thus w =g, w'. O

The central problem in generalizing a word problem solution to a conjugacy
problem solution lies in the fact that any letter in the word can be viewed as the first
letter in the conjugacy case. One has to find a convenient way to encapsulate this
extra freedom. This is the underlying idea that gave rise to the above definition and
the subsequent development. Pictorially this can be viewed as no longer writing
a word linearly but circularly; it being understood that the order of the letters is
preserved and only the identity of the first letter is lost (see figure 2).

Yt
S

N
o5 SR
o
b £
° AY
af

FIGURE 2. The word w given in equation (8) bent into a circle.
While the circularity removes the notions of beginning and end of
a word, it preserves the directionality of it.

DEFINITION 4.4. From a word w, we form the cyclic word c(w) that is a set
having as its members C*(w) for all 0 < i < L(w).

We further define that a rewrite rule is applicable to a cyclic word c(w) if it
is applicable normally to at least one of its members, w’ € c¢(w) say. If a rewrite
rule is applicable, let the member w’ of the cyclic word ¢(w) be rewritten in the
standard way and then let ¢(w) be replaced with c¢(w’) where w’ is understood to
have been rewritten. This method of letting a rewrite system act on a cyclic word
allows us to forget about conjugacy moves as we shall see.

A rewrite system is called cyclicly locally confluent, cyclicly confluent and
cyclicly terminating if it is locally confluent, confluent and terminating respec-
tively for cyclic words with the above method of application in mind. Furthermore,
a rewrite system is cyclicly complete if it is both cyclicly confluent and cyclicly
terminating. The above discussion proves the following theorem.



RAID BRAID: FAST CONJUGACY DISASSEMBLY IN BRAID AND OTHER GROUPS 9

THEOREM 4.5. A given cyclicly complete rewrite system solves the conjugacy
problem for the group with the given alphabet as gemerators and the relations ob-
tained from the rewrite rules by taking the reflexive-transitive-symmetric closure.

This leaves us with deciding when a rewrite system is cyclicly complete. It turns
out that Newman’s Lemma and the Critical Pair Lemma generalize to the cyclic
scenario and so: cyclic local confluence implies confluence if the system cyclicly
terminates and the cyclic local confluence can be checked by the absence of critical
pairs. The following two sections will be devoted to proving these results.

local Z

~. confluence -

FIGURE 3. The proof of Newman’s Lemma (lemma 4.6) in dia-
grammatic form. We begin at the top with a local divergence which
is rectifiable by assumption and thus by induction any global diver-
gence is also rectifiable. It is because of this diagrammatic proof
that Newman’s Lemma is also known as the Diamond Lemma.

4.2. The Cyclic Newman’s Lemma.

LEMMA 4.6. A cyclicly terminating rewrite system is cyclicly confluent if and
only if it is cyclicly locally confluent.

Proof. This proof is similar to the one given for the standard Newman Lemma
in [17]. The result is obvious from figure 3. If — is a rewrite rule, then « is its
inverse and —* its reflexive-transitive closure.

(if) We want to show that if y «<—* & —* z, then the final forms of y and z are
identical, which exist since the rewrite system cyclicly terminates. If z = y or if
T = z, the result is obvious. If x — y; —* y and © — 21 —™ 2, then there exists a
u such that y; —* u «<* z; by cyclic local confluence. The existence of a w such
that y —* w «* z follows by induction over arbitrary length rewriting paths; the
finiteness of all rewriting paths is attested to by cyclic termination.

(only if ) This it trivial as cyclic local confluence is subsumed by cyclic conflu-
ence. |
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4.3. The Cyclic Critical Pair Lemma. The Critical Pair Lemma states
that a rewrite system is locally confluent if and only if it has no critical pairs.
Recall that a critical pair arises from an overlap of two redexes in a word which
gives rise to a local divergence of rewriting paths which do not meet again. Given a
rewrite system R = {(l;,7;)}, a cyclic overlap is a cyclic word c¢(w) = ¢(abed) such
that abc = pl; and cda = nl; for some words a, b, ¢ and d, two (possibly equal)
integers ¢ and j and substitutions p and 7. The cyclic overlap c(abcd) is rewritten to
both c(pr;d) and c(bnr;). A cyclic overlap is non-critical if the reducts are joinable,
c(prid) «* c(bnr;) and critical otherwise. A cyclic critical pair is the (unordered)
pair of cyclic words (c(pr;d), c(bnr;)) which arises from a cyclic critical overlap. It
is obvious that if R contains cyclic critical pairs, it can not be cyclicly confluent.

For example, consider the rewrite system R = {abxba — cxc} over the alphabet
A = {a,b,c} and some variables x and y. Clearly R contains the cyclic critical
overlap abxbabyb which is to be rewritten into baxbcyc and cxcbyb. This cyclic
critical pair may be resolved by noting that if the variable contained between the
c letters is less than the other, it is that cyclic word which is to be preferred under
the lexicographic order ¢ < b < a. That is, we have to add a conditional rule
depending on the relative value of the variables. This global rule must be applied,
if applicable, with preference over the ordinary local rule. In this way we have
extended Knuth-Bendix completion to the cyclic case; note that all rules added
in this procedure are global (i.e. are to be applied to the entire word) whereas the
usual rules of normal rewrite systems are local (i.e. are to be applied to a sub-word).
We shall now prove the extension of the Critical Pair Lemma for the cyclic case.

LEMMA 4.7. A rewrite system R = {(l;,7:)} is cyclicly locally confluent if and
only if it contains neither critical nor cyclicly critical pairs.

Proof. We consider all relative positions of two redexes I; and [; in a cyclic word w
and analyze them in turn. The first four cases occur in the standard Critical Pair
Lemma but in the cyclic case there are five cases:

(1) (disjoint) Suppose c(w) = c(l;xl;y) for some words x and y. The existence
of the common reduct ¢(r;xzr;y) is obvious; see figure 4 (a).

(2) (variable overlap) Suppose l; contains a variable which contains [; as a
sub-term. If [; — r; does not change the applicability of /;, a common
reduct is obvious. If it does and the divergence does not resolve, we have
an instance of a critical pair; see figure 4 (b).

(3) (critical overlap) Suppose l; and [; have a critical overlap. A critical pair
exists and obviously prevent local confluence; see figure 4 (c).

(4) (orthogonal) Suppose I; and [; have a non-critical overlap. By definition
the divergence resolves; see figure 4 (d).

(5) (cyclical critical overlap) Suppose [; and [; have a cyclic overlap. If it
is critical, we have an instance of a cyclic critical pair which obviously
prevents cyclic local confluence. If it is non-critical, a common reduct
exists by definition; see figure 4 (e).

O
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() (d)

@ cyclic O
critical

pair

()

FIGURE 4. The proof of lemma 4.7 in its four cases: (a) the disjoint
case, (b) the variable overlap case, (c¢) the critical overlap case, (d)
the orthogonal case, (e) the circular critical overlap case.

5. The Conjugacy Problem in B,

The preceding section proved that a rewrite system will solve the conjugacy
problem in a group G if the reflexive-transitive-symmetric closure of its rules (the
replacement of arrows with equal signs) is identical to the group’s relations and pro-
vided that the rewrite system cyclicly terminates and has no critical pairs (normal
or cyclic).

For the braid groups B,,, we have a working word problem solution in the form
of a rewrite system. If it were cyclicly complete, we would have a conjugacy problem
solution. It is not cyclicly complete but it can be made so.
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TABLE 2. Cyclic overlaps between rules in W,,.

—  Cyclic Overlap Final Forms
n— n—1
2,2 ]I (di1a1,:S:) II Si
i=1 i=1
& Spo1 = S;I_1ka; 3<k<n 01050151 H (di,lal,isi) de—l,lal,n—ls;L_l
i=2
37 3 O'iUiflPO'iUiflPl O'iflo'iUi,lPO'i,lP/
0i—10i0;_1P'o;_1 P
3,4 040,_1Qo;_1Ro0; 1P 0i-1Q0i—1Ro;_1040,_1 P
& P = di_Q,jP/ Ui—lgiai—lez’—LjUz’R+P,

+

4,4 O'igiflQ10i71R10i0i71Q20i71R2 Jiflo'io'ileldifl,jUiR1 Q20i71R2
_ /. _ / +

& Q1 =di—2,;Q1 Q2 =di_2,;Q5 0i-10i0i_1Q2d;i_1;0:R5 Q1oi_1R

In table 2, we list all four cyclic overlaps between the rules of W,, and the two
final forms per overlap depending on the chosen rewrite path. Note that all overlaps
are critical and that the cyclic overlap refers to the entire cyclic word. According to
our extended form of Knuth-Bendix completion, we must orient these cyclic critical
pairs and add the resulting rules as global rules to the rewrite system. Consider the
rewrite system G,, below which is understood to contain only global rules for cyclic
words, i.e. the entire word has to be matched to redexes in G,,. The restrictions on
the variables are identical to those of W,,. The ordering <, is the standard shortlex
ordering, i.e. words are sorted lengthwise first and then lexicographically using <;.

n—1 n—1
Go ={(1) [] (dinarsS:) — [] Ss;
i=1 i=1

(2) oiai,lPoiai,lP' — Uiflo'iUi,lPUi,lP/ if P <y P’

or ai,laiai,lP’ai,lP if Pl Sb P;

(3) 040i-1Qoi—1Roj0; 1P — 0,_1Q0;_1Ro;_10;0,_1P;

(4) 0i0i-1Q10i-1R10;0;-1Q20;—1 Ry —

0i—100;—1Q1d;—1,jo; R Q40,1 Ry if Ry <4 Ry

or 0,_100;-1Q2d;i—1 j0: Ry Qo1 Ry if Ry <, Ry }
As described in the solution to the word problem, we will regard a cyclic word ¢(w)
as a pair c(w) = (k,c(ws)). The first entry is an integer counting the number of
copies of A2 in c(w). The second entry is the rest of the word written in the o;.
We shall now present an algorithm for the conjugacy problem in terms of W,, and

Gn. We prove, in a set of lemmas, that this algorithm solves the conjugacy problem
in B,.

ALGORITHM 5.1. Input: A cyclic braid word c(w). Output: A set of cyclic
braid words together with an integer that collectively are a unique representative of
the conjugacy class of w.

(1) Apply rule 1 of W,, as many times as possible.
(2) Test if w is splittable, i.e. if it is in the form w = wjws where w; commutes
with ws. If it is, separate w; and ws and treat them separately from now
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on. If not, do nothing. Note that we are testing the linear word w and
not c(w).

(3) Apply any rule in G, or rules 2 to 4 of W,, in that order of priority,
exactly once to each of the separated cyclic braid words, if possible.

(4) Go back to step 2 of the algorithm and continue until there is no braid
word which may be split further and no braid word to which any of the
rules in W,, and G,, are applicable.

(5) The integer k and the set of split braid words are now collectively the
unique representative required.

We note that because of the restrictions on the variable S,_1, rule 5 of W,
and rule 1 of G, are identical. It is obvious from the algorithm that if it cyclicly
terminates and W,, U G,, is cyclicly confluent, then the conjugacy problem in B, is
solved by it. Note that the splitting is valid as we have made the replacement of
every inverse generator by inverses of elements of the center and generators in step
1, this replacement is the content of rule 1 of W,,.

LEMMA 5.2. Algorithm 5.1 cyclicly terminates in O(L(w)*n(w)®) time, where
w s the initial braid word.

Proof. As previously argued (see the proof of theorem 3.3), the execution of step 1
of the algorithm terminates after O(L(w)n(w)?) time and increases the word length
to La(w) = L(w) + mn(w)(n(w) — 1) — m = O(L(w)n(w)?).

Testing splittability is a word problem and can thus be done in O(Lz(w)?*n(w))
[8]. As no rule, applied after step 1 in the algorithm, increases the length of the
word, the number of times that splitting may be done is bounded by La(w).

The application of the local rules terminates as previously shown with com-
plexity O(La(w)?) on linear words. They also terminate here because whenever an
infinite rewriting (due to the commutation relation) would be possible, we split the
braid word into two. Thus the complexity bound applies here as well.

The global rules either decrease or increase the generator index total of the
word. Therefore their application must terminate bounded by O(Ls(w)n(w)) as
total possible generator index count is bounded by this. The impossibility of inter-
ference (first lowering and then raising the total) is clear from the fact that all rule
overlaps are rules themselves.

As any one application of either a split, local rule or global rule may trigger
the application of another one of those three, the complexity of the algorithm is
the product of the partial complexities, i.e. O(La(w)*n(w)) = O(L(w)*n(w)?). O

LEMMA 5.3. Algorithm 5.1 is cyclicly confluent.

Proof. By theorem 3.1, W, is confluent and thus contains no critical pairs. Algo-
rithm 5.1 uses G,, as well as W,,. By construction, G,, resolves all the cyclic critical
pairs of W, but, as may be easily verified, introduces no further critical pairs or
cyclic critical pairs. By lemma 4.7 this is a necessary and sufficient condition for
cyclic local confluence. By lemma 5.2, the algorithm cyclicly terminates and so, by
lemma 4.6, the algorithm is confluent. O

LEMMA 5.4. Algorithm 5.1 solves the conjugacy problem in B, with computa-
tional complexity O(L(w)*n(w)?).
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Proof. The algorithm cyclicly terminates with complexity O(L(w)*n(w)?) and
the application of the rules is cyclicly confluent and thus satisfies all the criteria.
We must now show that the reflexive-transitive-symmetric closure of the rules is
equivalent to the braid group with conjugacy. This is obvious apart from the
splitting step in the algorithm. That splitting is correct is obvious too but what
remains to be proven is if splitting is confluent with respect to all the other rules,
i.e. that it does not matter whether we split first and then apply some rules or
vice-versa.

Clearly splitting can be modelled using rewrite rules and splitting terminates.
Thus it is confluent with respect to the others if it is locally confluent; or, has no
critical pairs. The absence of critical pairs can be verified easily but laboriously by
checking the local and global rewrite rules. O

The result of the rewrite chain is a normal form for the braid word but not in
the usual sense as we have a set of words that make up the normal form. To test
equality between two normal forms, we must compare pair-wise the elements of the
normal form which can be done in quadratic time in the length of the word and
constant time in the braid group index. Moreover, these methods can be applied
to many groups other than the braid groups.
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